Highly Luminescent Lead Bromide Perovskite Nanoparticles Synthesized with Porous Alumina Media

Akihiro Kojima,1,† Masashi Ikegami,*2 Kenjiro Teshima,3 and Tsutomu Miyasaka1,2

¹Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902

²Graduate School of Engineering, Toin University of Yokohama,

1614 Kurogane-cho, Aoba-ku, Yokohama, Kanagawa 225-8503

³Peccell Technologies, Inc., 1614 Kurogane-cho, Aoba-ku, Yokohama, Kanagawa 225-8503

(Received January 1, 2012; CL-120001; E-mail: ikegami@cc.toin.ac.jp)

Nanocrystalline lead bromide perovskite was synthesized by rapid self-organization on a mesoporous aluminum oxide film. With UV excitation, the film exhibited an intense green emission with a narrow bandwidth. The photoluminescence intensity is optimized for the conditions of synthesis and the kind of metal oxide.

High surface areas and activities realized by nanotextured materials create efficient media for energy conversion with use of small amounts of resources such as metals, semiconductors, and organic compounds.¹ Among semiconductive material, metal halide perovskites have been investigated as a lowdimensional layered compound, in which perovskite units are surrounded by organic methyl- or phenylammonium groups. These materials possess semiconductivity with band-gap structures confined by the organic molecule, exhibiting attractive optical and electrical properties due to quantum size effects. To date, quantum wells,^{2,3} wires,⁴ and dots^{5,6} characterized as organic-inorganic perovskite compounds have also been synthesized. There are only a few reports on zero-dimensional pure perovskite nanocrystals without organic insulator layers⁷ because it is difficult on synthesis to control their dimension. Among lead halide type perovskites, bulk crystals, CH₃NH₃- PbX_3 (X = Br, Cl, and I),^{8,9} can be synthesized from CH₃NH₃X and PbX₂ by solid-phase or solution-based self-organization techniques. Such preparation methods, however, have not been successfully applied to nanocrystallization of lead halide perovskite.

In our previous report, we have shown for the first time photoelectric conversion using the perovskite nanocrystals CH₃NH₃PbBr₃ and CH₃NH₃PbI₃ as visible light sensitizers to an n-type semiconductor, TiO2.10 High quantum conversion efficiency, i.e., electron injection from these perovskites to TiO₂ surfaces, was realized by formation of perovskite nanocrystalline particles with a diameter of 2-3 nm successfully synthesized by a solution technique. Here, we report fabrication of an efficient light emission medium created with the CH₃NH₃PbBr₃ nanoparticles. Self-organized within an oxide mesoporous film, the nanocrystals proved to be capable of high intensity, green photoluminescence. In this study, a thin Al₂O₃ film was chosen as a mesoporous medium, which, as an insulator, possess a large energy band gap of 8.7 eV¹¹ and high ionization potential¹² so that photonic energy absorbed by CH₃NH₃PbBr₃ can be fully converted to luminescence.

A low-viscosity Al_2O_3 paste was prepared by mixing 2.4 g of Al_2O_3 nanopowder (spherical particle with size 40–50 nm, Wako Pure Chemical), 1.5 mL of acetylacetone, 3 mL of purified

water, 14 mL of ethanol, and 2 g of poly(ethylene glycol) (average molecular weight: 20000 ± 5000) and subsequent grinding with an agate mortar. The paste was spin-coated onto a quartz glass substrate $(2.5 \text{ cm} \times 2.5 \text{ cm})$ at 4000 rpm followed by sintering at 500 °C for 1 h in air. The resultant porous film is mostly amorphous and has thickness of about 1 µm as confirmed by scanning electron microscopy observations. Semiconductor materials were also examined for comparison. Pastes of SnO₂ (22-43 nm, Wako) and ZrO₂ (<100 nm, Aldrich) were prepared by the same method. TiO₂ paste (ca. 13 nm for nanocrystal) was a commercial grade (Ti-Nanoxide D, Solaronix SA). Nanocrystalline CH₃NH₃PbBr₃ particles were deposited onto a porous Al₂O₃ film by the solution technique for crystallization.^{10,13} A precursor solution comprising stoichiometric CH₃NH₃Br and PbBr₂ in N,N-dimethylformamide was spin-coated on the moderately heated porous Al₂O₃ film (<50 °C). With drying off the solvent, crystallization of CH₃NH₃PbBr₃ was completed in a short time (<1 min).

Reflectance spectra of a $CH_3NH_3PbBr_3$ -deposited mesoporous thin Al_2O_3 film ($Al_2O_3/CH_3NH_3PbBr_3$) prepared from 10 and 1 wt % of precursor solutions are shown in Figure 1. Onset of an intense absorption at 550 nm obtained for 10 wt % preparation is attributed to band-gap absorption edge of $CH_3NH_3PbBr_3$.

A large absorbance decrease for the 1 wt % precursor solution indicates a decrease in the amount of loaded CH₃NH₃PbBr₃. It is noted that the dilution of the precursor

Figure 1. Reflectance spectra of $CH_3NH_3PbBr_3$ on a mesoporous Al_2O_3 film, prepared from 10 and 1 wt % of precursor solutions.

Figure 2. Emission spectra for $CH_3NH_3PbBr_3$ on a mesoporous Al_2O_3 film prepared from 10 and 1 wt % precursor solutions (excitation wavelength: 350 nm).

solution causes a significant blue shift of the absorption peak (edge) to 360 nm.

The spectral shift is assumed to be due to the quantum size effect. Takeoka et al. reported based on optical analysis that the zero-dimensional organic–inorganic perovskite of $(C_4H_8N_2H_4)_2$ -PbBr₆•2H₂O is assigned with an absorption peak of 312 nm.⁵ In this respect, it is thought that molecular size CH₃NH₃PbBr₃ particles could also be formed within the Al₂O₃ pore on sufficiently high dilution of the precursor.

Figure 2 and Table 1 show emission spectra and characteristics of Al₂O₃/CH₃NH₃PbBr₃ films with 350-nm excitation light. Several samples were prepared by changing the concentration of precursor solution. The emission peak was observed around 523 nm. The emission intensity tends to increase with diluting the concentration of precursor solution. Experiments with different concentrations showed that the samples prepared with conditions above 4 wt % show a very weak emission, as shown in Table 1. This may indicate that high precursor concentrations result in formation of bulk CH₃NH₃PbBr₃ which is too large to come into the mesoporous surface. As a result, the highest emission intensity is obtained with 1 wt % precursor. As to the photoluminescence properties of metal halide perovskites, Kitazawa and co-workers showed that microcrystalline CH₃NH₃PbBr₃ is capable of photoluminescence at room temperature although its intensity is weak.^{13,14} In contrast, strong luminescence occurs with the nanocrystalline particles prepared in our method.

The cross-section image of Al₂O₃/CH₃NH₃PbBr₃ film clearly shows that perovskite nanoparticles (ca. 5 nm) were separately deposited on the spherical Al₂O₃ as shown in Figure 3. Regarding the connection of the semiconductive nanoparticles on the metal oxide surface, the procedure using bifunctional molecules to form chemical bonding has been reported.¹⁵ In this study, the perovskite nanoparticles, synthesized in situ without use of any linker molecules, are believe to be making physical contact with the Al₂O₃ surface.

Table 1. Luminescence characteristics of Al₂O₃/CH₃NH₃-PbBr₃ films prepared with various precursor solutions

Precursor concentration /wt %	Peak /nm	Intensity	Precursor concentration /wt%	Peak /nm	Intensity
1	523	58.1	3.5	527	14.3
1.5	527	36.9	4	525	11.4
2	525	36.1	6	526	5.7
2.5	526	25.8	8	528	2.7
3	525	18.2	10	524	3.4

Figure 3. High-resolution SEM images for $CH_3NH_3PbBr_3$ nanoparticles. Left image: bare Al_2O_3 surfaces. Right image: deposited $CH_3NH_3PbBr_3$ crystals prepared with 1 wt% precursor solution.

The crystal size is slightly bigger than the reported Bohr radii.¹⁶ From X-ray diffraction analysis, Al₂O₃/CH₃NH₃PbBr₃ film prepared with 10 wt % precursor solutions shows diffraction peaks at 14.87, 21.1, 30.07, 33.71, 43.05, and 45.81°, assigned as (100), (110), (200), (210), (220), and (300) planes, respectively. These diffraction peaks tend to diminish monotonically with dilution of the precursor concentration due to decreased amount of the crystal (see Supporting Information).²⁰ Nevertheless, the most intense luminescence was observed from pale colored samples. These facts imply that the strong luminescence arises not only from enhanced surface area of CH₃NH₃PbBr₃ but also from the formation of quantum size particles. Figure 4 supports this possibility, which shows appearance of illuminant species during the in situ synthesis of CH₃NH₃PbBr₃ on the Al₂O₃ film under UV-light irradiation. Intense green luminescence occurs immediately when synthetic reaction starts during spin coating (<30 s).

To examine the effect of mesoporous material on luminescence, Al₂O₃ was replaced with other porous oxides and semiconductors for CH₃NH₃PbBr₃ synthesis. TiO₂, SnO₂, and ZrO_2 possess the conduction band levels of -4.0,¹⁷ -4.4,¹⁸ and $-2.9 \,\mathrm{eV^{18}}$ vs. vacuum level, respectively. ZrO₂ having an extremely large band gap (5.62 eV) can be regarded as an insulator similar to Al₂O₃.¹⁹ With a mosoporous ZrO₂ film, CH₃NH₃PbBr₃ nanoparticle proved to exhibit a strong luminescence similar to Al₂O₃. In contrast, luminescence was virtually absent for both TiO₂ and SnO₂. In our previous study,¹⁰ we determined the conduction band (CB) level of bulk $CH_3NH_3PbBr_3$ to be $-3.36\,eV$ (vs. vacuum level). Compared to this CB level, Al₂O₃ and ZrO₂ apparently possess much higher level that inhibits electron injection in terms of sensitization. On the contrary, the CB levels of TiO₂ and SnO₂ are located below that of CH₃NH₃PbBr₃, permitting electronic

Figure 4. In situ synthesis of illuminant $CH_3NH_3PbBr_3$ nanoparticle by using 1 wt % precursor solution under UV-light irradiation. (a) Colorless $CH_3NH_3PbBr_3$ precursor solution was uniformly dropped onto a mesoporous thin Al_2O_3 film. The Al_2O_3 film is previously heated to dry off the solvent. (b) and (c) Appearance of synthesis reaction. Quick vaporization of organic solvent triggers a nanocrystallization of highly luminous lead bromide perovskite into mesoporous Al_2O_3 structure.

sensitization without causing luminescence. This correlation indicates that intense emission takes place only when the conduction band level of the mesoporous oxide material is located higher (more negative) than that of nanocrystalline CH₃NH₃PbBr₃.

In conclusion, we have synthesized luminous lead bromide perovskite nanoparticles by making efficient use of mesoporous media. To the best of our knowledge, this is the first report of photoluminescence using quantum-dot size $CH_3NH_3PbBr_3$. Syntheses of other metal halide perovskites, $CH_3NH_3PbX_3$ (X = Br, I, and Cl), are under way in an attempt to get luminescent function over extended wavelengths. Further, we expect a similar luminescence to be obtained by electronic excitation of the perovskite on the porous surface in junction with a conductive electrode.

We thank Prof. N. Kawashima and Dr. T. N. Murakami of Toin University of Yokohama for fluorescence spectra measurements.

References and Notes

- † Present address: Peccell Technologies, Inc., 1614 Kuroganecho, Aoba-ku, Yokohama, Kanagawa 225-8503
- 1 B. O'Regan, M. Grätzel, *Nature* 1991, 353, 737.
- 2 T. Ishihara, J. Takahashi, T. Goto, *Phys. Rev. B* **1990**, *42*, 11099.
- 3 J. Calabrese, N. L. Jones, R. L. Harlow, N. Herron, D. L. Thorn, Y. Wang, J. Am. Chem. Soc. 1991, 113, 2328.
- 4 S. Wang, D. B. Mitzi, C. A. Feild, A. Guloy, J. Am. Chem. Soc. 1995, 117, 5297.
- 5 Y. Takeoka, K. Asai, M. Rikukawa, K. Sanui, Chem. Lett.

2005, 34, 602.

- 6 B. R. Vincent, K. N. Robertson, T. S. Cameron, O. Knop, *Can. J. Chem.* **1987**, *65*, 1042.
- 7 V. Babin, P. Fabeni, M. Nikl, G. P. Pazzi, I. Sildos, N. Zazubovich, S. Zazubovich, *Chem. Phys. Lett.* 1999, 314, 31.
- 8 D. Weber, Z. Naturforsch., B 1978, 33, 1443.
- 9 A. Poglitsch, D. Weber, J. Chem. Phys. 1987, 87, 6373.
- 10 A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 2009, 131, 6050.
- 11 B. Ealet, M. H. Elyakhloufi, E. Gillet, M. Ricci, *Thin Solid Films* 1994, 250, 92.
- 12 S. B. H. Bach, S. W. McElvany, J. Phys. Chem. 1991, 95, 9091.
- 13 N. Kitazawa, Y. Watanabe, Y. Nakamura, J. Mater. Sci. 2002, 37, 3585.
- 14 S. Kashiwamura, N. Kitazawa, Synth. Met. 1998, 96, 133.
- 15 I. Robel, V. Subramanian, M. Kuno, P. V. Kamat, J. Am. Chem. Soc. 2006, 128, 2385.
- 16 K. Tanaka, T. Takahashi, T. Ban, T. Kondo, K. Uchida, N. Miura, *Solid State Commun.* 2003, 127, 619.
- 17 A. Zaban, O. I. Mićić, B. A. Gregg, A. J. Nozik, *Langmuir* 1998, 14, 3153.
- 18 X. Ai, N. Anderson, J. Guo, J. Kowalik, L. M. Tolbert, T. Lian, J. Phys. Chem. B 2006, 110, 25496.
- 19 I. Kosacki, V. Petrovsky, H. U. Anderson, *Appl. Phys. Lett.* 1999, 74, 341.
- 20 Supporting Information is available electronically on the CSJ-Journal Web site, http://www.csj.jp/journals/chem-lett/ index.html.